If it's not what You are looking for type in the equation solver your own equation and let us solve it.
35y^2-5y=0
a = 35; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·35·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*35}=\frac{0}{70} =0 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*35}=\frac{10}{70} =1/7 $
| -x+40=4(3x-3) | | 5r-7-3r=19 | | 4y-25=71 | | 2x/9-1/4=25 | | 13=c/2 | | 1/(3x^2)-5/8=3/7 | | 1/3x^2-5/8=3/7 | | 6y+48=90 | | 28=80+x/2100+x | | c-1/6=1/2 | | 25=-8+9*(x+3 | | 5n-12=3n+2 | | v-3/8=1/4 | | -18=15-3(6l+5) | | 4=n/4=2 | | 500=x+0.07x | | 2x2-11x+5=0 | | g-1/4=1/4 | | t^2(2t-1)+(2t-1)=0 | | -18=15-3(6l+5 | | A=-x | | (3-(-3)=m(2-1) | | (5x+10)/(2x+2)=2 | | (25/x+4)3-8x=0 | | 4(3r+2)-3r=-10-2 | | 2x^2+5x-8=12 | | 6(x+11)=-18 | | 3x=14x-21 | | -2+2y=-8 | | 12÷2÷3÷2=x | | 6y+30=84 | | 6x+11=-18 |